
1

 Declarative (nonprocedural)
◦ Functional Programming

◦ Logic Programming

 Imperative
◦ Object Oriented Programming

2

Sorting procedurally:
1. Find the min in the remained numbers.
2. Swap it with the first number.
3. Repeat steps 1,2 until no number remains.

Sorting nonprocedurally:
1. B is a sorting of A ↔ B is a permutation of A

and B is ordered.
2. B is ordered ↔ for each i<j: B[i] ≤ B[j]

Which is higher level?

3

 A.T.P: Developing programs that can construct
formal proofs of propositions stated in a symbolic
language.

 Construct the desired result to prove its existence
(most A.T.P.’s).

 In Logic Programming, programs are expressed in
the form of propositions and the theorem prover
constructs the result(s).

 J. A. Robinson: A program is a theory (in some
logic) and computation is deduction from the
theory.

4

 Developed in Groupe d’Intelligence
Artificielle (GIA) of the University of
Marseilles (early 70s) to process a natural
language (French).

 Interpreters: Algol-W (72), FORTRAN (73),

Pascal (76), Implemented on many
platforms (Now)

 Application in AI since mid-70s
 Successor to LISP for AI apps

 Not standardized (but has ISO standard

now)

5

13.2

6

7

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

grandparent(X,Z) :- parent(X,Y), parent(Y,Z).

ancestor(X,Z) :- parent(X,Z).

ancestor(X,Y) :- parent(X,Y), ancestor(Y,Z).

sibling(X,Y) :- mother(M,X), mother(M,Y),

 father(F,X), father(F,Y), X \= Y.

cousin(X,Y) :- parent(U,X), parent(V,Y), sibling(U,V).

father(albert, jeffrey).

mother(alice, jeffrey).

father(albert, george).

mother(alice, george).

father(john, mary).

mother(sue, mary).

father(george, cindy).

mother(mary, cindy).

father(george, victor).

mother(mary, victor).

8

?- [kinship].
% kinship compiled 0.00 sec, 3,016 bytes
Yes

?- ancestor(X, cindy), sibling(X, jeffrey).
X = george
Yes

?- grandparent(albert, victor).
Yes

?- cousin(alice, john).
No

?- sibling(A,B).
A = jeffrey, B = george ;
A = george, B = jeffrey ;
A = cindy, B = victor ;
A = victor, B = cindy ;
No

SWI Prolog

 Programs are constructed from A number of
clauses: <head> :- <body>

 Clauses have three forms:
◦ hypotheses (facts)
◦ conditions (rules)
◦ goals

 Both <head> and <body> are composed of
relationships (also called predications or
literals)

9

assertions (database)

questions

 Represent properties of and relations
among the individuals

 A relationship is application of a predicate
to one or more terms

 Terms:
◦ atoms (or constants): john, 25, …
◦ variables (begin with uppercase letters): X, …
◦ compounds

 Horn clause form: At most one relationship
in <head>

10

 It is more convenient to describe individuals
without giving them names (expressions or
compounds as terms).

 using functors (tags):
d(X, plus(U,V), plus(DU,DV)) :- d(X,U,DU),

d(X,V,DV).
 or using infix functors:

d(X, U+V, DU+DV) :- d(X,U,DU), d(X,V,DV).
 instead of

d(X,W,Z) :- sum(U,V,W), d(X,U,DU), d(X,V,DV),
sum(DU,DV,Z).

 with less readability and some other
things…

11

13.3

12

 Few primitives and No constructors.

 Data types and data structures are defined
implicitly by their properties.

13

 Natural number arithmetic

sum(succ(X), Y, succ(Z)) :- sum(X,Y,Z).
sum(0,X,X).
dif(X,Y,Z) :- sum(Z,Y,X).

:-sum(succ(succ(0)),succ(succ(succ(0))),A).
A = succ(succ(succ(succ(succ(0)))))

 Very inefficient! (Why such a decision?)
 Use of ‘is’ operator (unidirectional)

14

 Simplicity
◦ Small number of built-in data types and operations

 Regularity
◦ Uniform treatment of all data types as predicates

and terms

15

 Compound terms can represent data
structures

 Example: Lists in LISP

(car (cons X L)) = X

(cdr (cons X L)) = L

(cons (car L) (cdr L)) = L, for nonnull L

16

 Using compound terms:
car(cons(X,L), X).

cdr(cons(X,L), L).

list(nil).

list(cons(X,L)) :- list(L).

null(nil).

 What about null(L)?

 How to accomplish (car (cons ‘(a b) ‘(c d)))?

17

 Using ‘.’ infix functor (in some systems)
instead of cons:
◦ Clauses?

 Most Prolog systems allow the abbreviation:
◦ [X1, X2, …, Xn] = X1. X2. … .Xn.nil

◦ [] = nil

◦ ‘.’ is right associative!

18

 Implicitly done by pattern matching (unification).
append([], L, L).
append(X.P, L, X.Q) :- append(P,L,Q).

 Compare with LISP append:
(defun append (M L)
 (if (null M)
 L
 (cons (car M) (append (cdr M) L))))

 Taking apart in terms of putting together!
◦ What X and P are cons’d to create M?
◦ What number do I add to 3 to get 5 (instead of 5-3)

 Efficient!?

19

 A tree using lists (in LISP):
◦ (times (plus x y) (plus y 1))

 Using compound terms directly (as records):
◦ times(plus(x, y), plus(y, 1))

 Using predicates directly:
◦ sum(x, y, t1).
◦ sum(y, 1, t2).
◦ prod(t1, t2, t3).

 Which is better?

20

Symbolic differentiation using predicate
structured expressions:

d(X,W,Z) :- sum(U,V,W), d(X,Y,DU), d(X,V,DV),

sum(DU,DV,Z).

d(X,W,Z) :- prod(U,V,W), d(X,U,DU), d(X,V,DV),
prod(DU,V,A), prod(U,DV,B), sum(A,B,Z).

d(X,X,1).

d(X,C,0) :- atomic(C), C \= X.

21

 Waste use of intermediate (temporary)
variables

 Less readability
 Unexpected answers!
sum(x,1,z).
:- d(x,z,D).
No
◦ Why? What did you expect?
◦ How to correct it?

22

 All that is true is what can be proved on the basis
of the facts and rules in the database.

 Very reasonable in object-oriented apps (modeling
a real or imagined world)
◦ All existing objects are defined.
◦ No object have a given property which cannot be found in

db.

 Not suitable for mathematical problems (Why?)
◦ An object is generally take to exist if its existance doesn’t

contradict the axioms.

 Predicates are better for OO-relationships,
Compounds for mathematical ones (Why?)
◦ We cannot assume existance of 1+0 whenever needed.

23

 What’s the answer?
equal(X,X).
:- equal(f(Y),Y).
?

 What’s the logical meaning? (occurs check)
 Any other meaning?
 Can it be represented in a finite amount of

memory?
 Should we detect it?

24

13.4

25

 N. Wirth: Program = data structure + algorithm
 R. Kowalski: Algorithm = logic + control

 In conventional programming:
◦ Logic of a program is closely related to its control
◦ A change in order of statements alters the meaning of

program

 In (pure) logic programming:
◦ Logic (logic phase) is determined by logical

interrelationships of the clauses not their order.
◦ Control (control phase) affects the order in which actions

occur in time and only affects the efficiency of programs.

 Orthogonality Principle

26

 Top-down ≈ Recursion:
◦ Try to reach the

hypotheses from the goal.

 Bottom-up ≈ Iteration:
◦ Try to reach the goal from

the hypotheses.

 Hybrid:
◦ Work from both the goals

and the hypotheses and try
to meet in the middle.

 Which one is better?

:- fib(3, F).
N=3, M=2, K=1,

F=G+H

:- fib(2,F).
 N=2, M=1, k=0,

F=G+H

:- fib(1,F).
F=1

:- fib(1,F).

F=1
:- fib(1,1).

:- fib(0,F).

F=1

:- fib(1,1). :- fib(0,1).

27

fib(0,1). fib(1,1).

fib(N,F) :- N=M+1, M=K+1, fib(M,G),

 fib(K,H), F=G+H, N>1.

 We have seen logical and record (data structure)
interpretations.

 Clauses can also be viewed as procedure
invocations:
◦ <head>: proc. definition
◦ <body>: proc. body (a series of proc. calls)
◦ Multiple definitions: branches of a conditional (case)
◦ fib() example…

 Procedure calls can be executed in any order or
even concurrently! (pure logic)

 Input/Output params are not distinguished!
◦ fib(3,3) ↔ true. fib(3,F) ↔ F=3. fib(N,3) ↔ N=3. fib(N,F) ↔

?

28

 Heavy use of unification, backtracking and
recursion.

 Unification (Prolog pattern matching – from
Wikipedia):
◦ One-time assignment (binding)
◦ uninst. var with atom/term/another uninst. var (aliasing)

(occurs check)
◦ atom with the same atom
◦ compound with compound if top predicates and arities of

the terms are identical and if the parameters can be unified
simultaneously

◦ We can use ‘=‘ operator to explicitly unify two terms

 Backtracking:
◦ Make another choice if a choice (unif./match) failes or want

to find other answers.
◦ In logic prog. It is the rule rather than the exception.
◦ Very expensive!

 Example: len([], 0). len(X.T, L+1) :- len(T,L).

29

 Prolog lang. is defined to use depth-first search:
◦ Top to bottom (try the clauses in order of entrance)
◦ Left to right
◦ In pure logic prog., some complete deductive algorithm

such as Robinson’s resolution algorithm must be
implemented.

 DFS other than BFS
◦ Needs much fewer memory
◦ Doesn’t work for an infinitely deep tree (responsibility of

programmer)

 Some programs may fail if clauses and subgoals
are not ordered correctly (pp.471-474)

 Predictable execution of impure predicates (write,
nl, read, retract, asserta, assertz, …)

30

31

[trace] ?- ancestor(X, cindy), sibling(X,jeffrey).
Event Depth Subgoal
==================================
Call: (1) ancestor(X, cindy)
Call: (2) parent(X, cindy)
Call: (3) father(X, cindy)
Exit: (3) father(george, cindy)
Exit: (2) parent(george, cindy)
Exit: (1) ancestor(george, cindy)
Call: (1) sibling(george, jeffrey)
Call: (2) mother(M, george)
Exit: (2) mother(alice, george)
Call: (2) mother(alice, jeffrey)
Exit: (2) mother(alice, jeffrey)
Call: (2) father(F, george)
Exit: (2) father(albert, george)
Call: (2) father(albert, jeffrey)
Exit: (2) father(albert, jeffrey)
Call: (2) george\=jeffrey
Exit: (2) george\=jeffrey
Exit: (1) sibling(george, jeffrey)

X = george
Yes

SWI Prolog

32

If we move parent(X,Y) :- father(X,Y) before parent(X,Y) :- mother(X,Y),

we have:
Event Depth Subgoal
==================================
Call: (1) ancestor(X, cindy)
Call: (2) parent(X, cindy)
Call: (3) mother(X, cindy)
Exit: (3) mother(mary, cindy)
Exit: (2) parent(mary, cindy)
Exit: (1) ancestor(mary, cindy)
Call: (1) sibling(mary, jeffrey)
Call: (2) mother(M, mary)
Exit: (2) mother(sue, mary)
Call: (2) mother(sue, jeffrey)
Fail: (2) mother(sue, jeffrey)
Redo: (2) mother(M, mary)
Fail: (2) mother(M, mary)
Fail: (1) sibling(mary, jeffrey)
Redo: (3) mother(X, cindy)
Fail: (3) mother(X, cindy)
Redo: (2) parent(X, cindy)
…

SWI Prolog

 ‘!’: Discard choice points of parent frame and
frames created after the parent frame.

 Always is satisfied.
 Used to guarantee termination or control execution

order.

 i.e. in the goal :- p(X,a), !
◦ Only produce the 1st answer to X
◦ Probably only one X satisfies p and trying to find another

one leads to an infinite search!

 i.e. in the rule color(X,red) :- red(X), !.
◦ Don’t try other choices of red (mentioned above) and color

if X satisfies red
◦ Similar to then part of a if-then-elseif

33

Fisher, J.R., Prolog Tutorial,

http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/contents.html

 A ‘green’ cut
◦ Only improves efficiency

◦ e.g. to avoid additional unnecessary computation

 A ‘red’ cut
◦ e.g. block what would be other consequences of the

program

◦ e.g. control execution order (procedural prog.)

34

Fisher, J.R., Prolog Tutorial,

http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/contents.html

p(a).
p(X) :- s(X), r(X).
p(X) :- u(X).

r(a). r(b).

s(a). s(b). s(c).

u(d).

:- p(X), !
:- r(X), !, s(Y).
:- r(X), s(Y), !
:- r(X), !, s(X).

part(a). part(b). part(c).
red(a). black(b).

color(P,red) :- red(P),!.
color(P,black) :- black(P),!.
color(P,unknown).

:- color(a, C).
:- color(c, C).
:- color(a, unknown).

35

Fisher, J.R., Prolog Tutorial,

http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/contents.html

max(X,Y,Y) :- Y>X, !.

max(X,Y,X).

:- max(1,2,D).

:- max(1,2,1).

See also MacLennan’s example p.476

 Logic programming is limited to first-order
logic: can’t bind variables to predicates
themselves.

 e.g. red (f-reduction) is illegal: (p(x,y,z) ↔
z=f(x,y))
red(P,I,[],I).
red(P,I,X.L,S) :- red(P,I,L,T), P(X,T,S).

 But is legal if the latter be defined as:
red(P,I,X.L,S):- red(P,I,L,T), Q=..[P,X,T,S],
call(Q).

◦ What’s the difference?

36

 In LISP, both code and data are first-order
objects, but in Prolog aren’t.

 Robinson resolution algorithm is refutation
complete for first-order predicate logic.

 Gödel’s incompleteness theorem: No
algorithm is refutation complete for higher-
order predicate logic.

 So, Prolog indirectly supports higher-order
rules.

37

 How to define nonsibling? Logically…
nonsibling(X,Y) :- X = Y.
nonsibling(X,Y) :- mother(M1,X), mother(M2,Y), M1

\= M2.
nonsibling(X,Y) :- father(F1,X), father(F2,Y), F1 \=

F2.

 But if parents of X or Y are not in database?
◦ What is the answer of nonsibling? Can be solved

by…
nonsibling(X,Y) :- no_parent(X).
nonsibling(X,Y) :- no_parent(Y).
◦ How to define no_parent?

38

 Problem: There is no positive fact expressing
the absence of parent.

 Cause:
◦ Horn clauses are limited to

◦ C :- P1,P2,…,Pn ≡ C holds if P1^P2^…^Pn hold.

◦ No conclusion if P1^P2^…^Pn don’t hold!

◦ If, not iff

39

Solutions:
 Stating all negative facts such as no_parent
◦ Tedious
◦ Error-prone
◦ Negative facts about sth are usually much more than

positive facts about it

 “Cut-fail” combination
◦ nonsibling(X,Y) is satisfiable if sibling(X,Y) is not (i.e.

sibling(X,Y) is unsatisfiable)
◦ nonsibling(X,Y) :- sibling(X,Y), !, fail.
◦ nonsibling(X,Y).
◦ how to define ‘fail’ ?!

40

 ‘not’ predicate
◦ not(P) is satisfiable if P is not (i.e. is unsatisfiable).
◦ not(P) :- call(P), !, fail.
◦ not(P).
◦ nonsibling(X,Y) :- not(sibling(X,Y)).

 Is ‘not’ predicate the same as ‘logical
negation’? (see p.484)

41

13.5

42

 Logic programs are self-documenting

 Pure logic programs separate logic and
control

 Prolog falls short of logic programming

 Implementation techniques are improving

 Prolog is a step toward nonprocedural
programming

43

 Programming in a higher-level, …

 Application orientation and…

 Transparency
◦ programs are described in terms of predicates and

individuals of the problem domain.

 Promotes clear, rapid, accurate programming

44

 Simplifies programming

 Correctness only deals with logic

 Optimization in control cannot affect
correctness

 Obeys Orthogonality Principle

45

 Definite control strategy
◦ Programmers make explicit use of it and the result

have little to do with logic

◦ Reasoning about the order of events in Prolog is
comparable in difficaulty with most imperative of
conventional programming languages

 Cut doesn’t make any sense in logic!

 not doesn’t correspond to logical negation

46

 Prolog is far from an efficient language.

 So, it’s applications are limited to apps in
which:
◦ Performance is not important

◦ Difficult to implement in a conventional lang.

 New methods are invented

 Some compilers produce code comparable to
LISP

47

 Pure logic programs prove the possibility of
nonprocedural programming.

 In Prolog, DFS requires programmers to
think in terms of operations and their
proper ordering in time (procedurally).

 And Prolog’s control regime is more
unnatural than conventional languages.

 So, there is still much more important work
to be done before nonprocedural
programming becomes practical.

48

 13.1

 13.2

 13.3

 13.4
◦ except topics starting on pp. 471, 475, 477, 484,

485, 486, 488

 13.5

49

 Colmerauer, Alain, Philippe Roussel, The Birth of Prolog, Nov.
1992, URL: http://www.lim.univ-
mrs.fr/~colmer/ArchivesPublications/HistoireProlog/19nove
mber92.pdf

 Fisher, J.R., Prolog Tutorial, 2004, URL:
http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/c
ontents.html

 MacLennan, Bruce J., Principles of Programming Languages:

Design, Evaluation and Implementation, 3rd ed, Oxford
University Press, 1999

 Merritt, Dennis, “Prolog Under the Hood: An Honest Look”, PC

AI magazine, Sep/Oct 1992

 “Unification”, Wikipedia, the free encyclopedia, 25 Sep. 2005,
URL: http://en.wikipedia.org/wiki/Unification

50

51

